

Mercury and Sulfur Cycling in the Great Salt Lake

September 25, 2008

Jacob Parnell

Understanding the molecules of life.

Great Salt Lake Background

Geography

- 2nd saltiest lake on Earth
- 4th largest terminal lake

Environment

- Extremely high sulfate concentration (10-20 g/L)
- High [metal]

Ecology

- Vital stop-over for migratory birds
- Brine shrimp & flies;Diatoms

Microbial Alchemy

Following modification of Paracelsus to ancient Arabic ideas, the basis of matter was the alchemical trinity of principles-- salt, sulfur and mercury.

Salt was the principle of fixity (non-action) and incombustibility; mercury was the principle of fusibility (ability to melt and flow) and volatility; and sulfur was the principle of inflammability.

Microbial Alchemy

What happens when we have high doses of mercury, salt and sulfur?

"The dose makes the poison."
-Paracelsus

Sulfur

<u>Source</u>	[SO ₄	2-]*	Reduction Rates
Fresh water	0.003	3 g/L	20-200 nmol g ⁻¹ d ⁻¹
Sea water	0.9	g/L	100-300 nmol g ⁻¹ d ⁻¹
Hypersaline	10-48.0	g/L	400-6,200 nmol g ⁻¹ d ⁻¹

*10,000-fold difference in [SO₄]

(from Oren, 2002)

.com./TRAVEL

SEARCH

(The Web

O CNN.com

Search

advertisement

Home Page World

U.S.

Weather

Business at commoney

Sports at Si.com

Politics

Law

Technology

Science & Space

Health

Entertainment

Travel

Education Special Reports

SERVICES

Video

E-mail Newsletters

CNNtoGO

SEARCH

Web () CNN.com (

Search

Great Salt Lake: More than meets the nose

Wednesday, November 5, 2003 Posted: 12:00 PM EST (1700 GMT)

SALT LAKE CITY, Utah (AP) --Famed western writer Wallace Stegner called it "a desert of water in a desert of salt and mud and rock" -- an apt description for Utah's dead sea.

Only brine shrimp, which are less than a half-inch long, some bacteria and algae can survive in its waters, which are three to five times saltier than the ocean. But everyone gets a whiff when stiff winds blow the lake's peculiar odor -- known affectionately as "lake stink" -- into the Salt Lake valley.

For adventurers who can look past their nose, this desert of water -- much like the desert playa it spreads across -- is desolately beautiful. It spreads across 1,200 square miles and is home to

Full-grown bison and calves cross a road to another pasture on Antelope Island, the Great Salt Lake's largest island.

Story Tools

€ SAVE THIS **€** □ E-MAILTHIS

€ PRINT THIS € \$\text{\text{MOST POPULAR}}

Metabolites

Mercury

Bioaccumulation of Methylmercury

Mercury Methylation

- A strong inverse relationship between the salinity and mercury methylation.
 - Olson and Cooper, 1974
- Sediments from a 2.4% salt environment inhibited mercury methylation by ~60% of the level observed in lower-salinity sediments
 - Compeau and Bartha, 1987
- The percent of mercury as MeHg differs between fresh marsh (3.0% MeHg/total Hg) and salt marsh (1.7% MeHg/total Hg) sediments.
 - Kongchum et al., 2005

Mercury and Sulfur Cycles

Methylation and SR factors

Physical or Chemical Condition*	Influence on Methylation*				
Low dissolved oxygen	Increased methylation				
Lower pH	Increased methylation				
Increases dissolved organic carbon (DOC)	Increased methylation				
Increased salinity	Decreased methylation				
Increased nutrient concentrations	Increased methylation				
Increased selenium concentrations	Decreased methylation				
Increased temperature	Increased methylation				
Increased sulfate concentrations	Increased methylation				
Increased sulfide concentrations	Increased methylation				

^{*}See U.S. EPA-OSW Human Health Risk Assessment Protocol.

Sulfate Reduction & Methylmercury

Functional Gene PCA

GeoChip Data

GeoChip Data

Gene Category	Relative intensity value									
	RP	Al	FB	2565 DB	2565 I	2565 S	3510 DB	3510 I	3510 S	
Protocatechuate	3.33	2.41	2.97	3.67	2.71	3.14	4.04	2.86	2.37	
Tellurium	3.38	2.32	3.59	3.19	4.52	3.05	0.95	3.72	1.50	
Mercury	6.43	3.51	1.63	3.07	3.99	3.09	2.07	2.18	4.22	
Sulfate Reduction	1.41	1.36	1.42	1.99	1.13	2.18	2.39	2.23	1.17	
Chromium	9.16	1.67	5.27	5.73	5.41	3.36	1.79	2.93	1.53	
Cellulase	2.77	5.61	3.24	4.19	4.67	4.11	6.25	4.61	5.57	
Arsenic	4.51	4.72	3.82	3.59	5.05	3.60	5.54	3.24	6.98	
Nitrate Reductase	6.04	1.73	4.82	4.96	3.73	4.16	2.48	3.56	2.66	

Number of gene variants in each pathway

Abundance of gene variants in each pathway

Ratio indicates selective pressure

Sulfate:

dsrAB responsible for sulfate reduction

GSL has [SO₄=] ranging from 10-20 g/L (extremely high)

No selective pressure for more efficient *dsrAB* genes

Metals:

Genes are responsible for resistance to metal toxicity

GSL has extremely high concentrations of heavy metals

Strong selective pressure for more efficient metal resistance genes

Mercury Reductase

Methylmercury

Conclusions

- Highest methylmercury concentrations the USGS has ever found (Naftz)
- Sulfate reduction rates among the highest ever reported for natural environments (Brandt, et al., 2001)
- Despite high salinity, mercury methylation is driven by sulfate-reducing bacteria
- Drop in methylmercury concentration coincides with demethylation genes

Acknowledgements

Reed Gann Mike Pfrender

Jizhong Zhou Joy Van Nostrand Zhili He

D. Naftz

J. Whitehead

J. Gardberg